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COMWBX]IVS

By R.B.Angsll
Ohio Yesleyan

Professor Storrs iicCall and I share an interest in logical systems whick
contzin the non-classical theorems:

1, =(p=>=p) - It is false that if p then not=p,

2. (p+9)» =(p+-q) - If (if p then q) then it is false that (if p then not=-q);
althongh our notives differ. I called ny system, PAl,(JSL,1962) a logic of sub-
Junctive conditionals; he called his system, CCl,(J8L,1966) a system of "connexive
imolication” and allied himself with those who, according to Sextas .Smniricas,

"say that a conditional is sound vhen the contradictory of its consequent is in-
corpatible with its antecedent®, Nevertheless, our two systems are very closely
related formelly. i'6Call, in effect, added five esxioms to my systen and established
the conpleteness of this expanded axiom-get with resvect to the same truth-tables

I had nsed in 1962 for the prinitives, the conditional, ennjunetion and negrtion.
PAl shoved it possible to have a consistent provositional logic which 1) contains
the classical PM calenlus (with 'S ! interproted as 'not..or..'), 2) eliminates ell
the so-cnlled paradoxes of material and strict implication from the conditional,

3) inclades most of the traditional logicel vrinciples involving econditionals,

and yet 4) inclodes the non-classical theorens mentioned above. i'¢cCall pointed

oat the independence of all such systens of any of the well-known systems of logic
and proved his system Post-conplete.

Bogides those two systems there are many other constructible systems which share
the properties Just described. The problem ie to find a satisfactory one. Certailn
difficulties of interpretation arose in connection with PAl which led me to look
for better systems; these difficulties are anggravated, rather than modified, by
the new axions in McCall's expansion, although from a formal point of view his
systen 1s certainly the more interesting. These difficulties, as well as the
reletionaships of these two systems to eanch other amd to modal logic, stand ount
cloarly in the light of an observation which licCall credits to leredith - namely,
that the trath-table we both used for the conditional can be eliminated in favor
of a unary modal operator.

In thies paper 1 preseat two modal logics, PAlm snd CClm, which nse C.l.Lewis’s
priuitives for possibility,nezation and conjunction, and lLewis's definitions of other
logical constents; but yield respectively my so-called "logic of subjunctive con-
ditionals" and ieCall's system of ®"connexive implication”, The four-valuned trath-
tables for negntion and poasidility are those of Lewls's Group II matrices; the
troth-table for conjunstion is that of PAl and CCl, not Lewis's. On this besis,
the defined conditlional comes oat to have the sene trath-table as that assigned
in PAl end CCl, This suggests the odd conelusion that the difference between
PAl and CCl on the ono hand and Levis's systems was not relrted to conditionality
or possibility so much ss to the different concepts of conjunction.

Table I showa three axiom sets: Lewis's S3,the modal version, PAlm, of my
logic of subjunctive conditionsels and a modal vorsion, CClm, of iicCall's system
of "connexive implication”". The matrices establish the consistency of the various
systera oresented, and the derivations appended to this paper show that CClm and
PAln are comvlete with respect to licCell's CCl, and my PAl, respectively. Table I1
shows tho interrelationships between the rxioms and theorenms of Lewis's systemg,
51,57,53,54,585, i.eCell's CCl, my PAl, PAlm, CClm end Rossare axiomntization of
of the classical provositional caleulos of Ppincivia ::nthenotica. The following

renmorks draw together ond reflect upon sore of the resunlts shown in these two
tables.

*This papor was sapported by MSF Grants GS 630 end GS 1010.




The differences between S3 and PAlm ar. not so great, in one respect, as they
first avpear to be. The fornulas appearing as Al znd A5 in each are mutually
derivoble in the other; exioms 4,6, and 7 are identical in both sys "ens. Thus,
the roal differences boil down to the fact that the strict implications in S3'%s
txions 2 and 3 are merely the corresponding troth-funetional conditionals in
PAln, and that PAlm coantains, in Axionm 8 the non-clcssieal formnla,(p-3q)- =(p>-q).

Sxanination of Table II shows that in ..cCall's and ny systems the formulae
3, (q.p)~>p and 6. p—=3(p.p) nre novhores dorivadle., As iverett lielson vointed
longz ©70, the non-derivability of the first of these, Sinpy'ific-tion, is 2 price
we nust pay for using the non-classical theorens with stendord transposition,
8yllogisn, and the ordinery rules of substitntion. Both ileCell's system and mine
nust face up to the demrnd that we either rovies onr systems to inclode these
theorems, or explain why they arc non-derivsble and Justify their non-inclosion.
In modal logic, the non-derivability of those forrmula lends to the nonmeinclusion
of the distinctive axion of 52, ¢(q.p)- ¢p. hemcasmsntheazhebein Bat Ha.p)><p
also falls in all these systems; and this ig cleally due to the vroperties of
conjanction ( =8 relfected in the differant conjunction matrix).

Secondly, all of “cCrll's and my systems inclade, as intended, the following
theroei:s or axioms vhich are not deriveble in Lewis or in classical logle:

27, (p=»q)»=(p->-q)

28, (p-=p)»-(p->-p)

29- "(F""’p)
and others. Ordinarily, this wonld bde caunse for self-congrotuddtion, Bot vhen
these theorems are rednced to modanl propositions they oprcsent serions oroblems
of interpretation. They becone, regpectively, equivelent to theorems stating:

27¢, 2(p.q)-> ¢ (p.~q)

28Y, &(v.p)—> ¢(p.-p)

29'. 4(p.p)
The first wonld seem false whenever q is a tautology; the second would seem false
whenevor p is consistent; and the third would be false whonever p waskt inconsistent.
These consequences alone seem fairly devastating for both of our systems.

When we consider the nex axiors iicCall added to esteblish Post-complectaness,
however, the difficulties in intervretation incresse, m To be sure sone of ndditional
axloms in CCl (cf. 20,21,22,23,and 26 in Tgble 11) seem plausible, e.g., his
CC1 Axion 2, (((p-»p)=>q)->q) (20 in Table II) which oceurs in all Lewis systems
axcept X1; as well as in Pi, But there is a pecnlier and irrational bias in
sone of them, Thus Axion 7 of CC1 (23 in Table II), p~¥(p.p).p), seems eminently
Plansible until it is realized that while p will imply (or be irmplied by) any
conjunction eonteining Just an odd namber of iterctions of itself, it never implies
(or is implied by) a conjunction with an evon number of conjuncts of itself. Thus

p->((p.p).p)
P-»({{(p.p).p).p).p)
p-5({((((p.p).p).p)en).D).p)
ore all logicnl truths, but
i) p)ep)
P p»p ] ]
p—-x((((g.p?.p?.p). )p)
are nmer:ly contingent. Again, ang conjunction containgng just an even number of
conjoncts of p, a8 in
(p.p)=>(q~»q) (CC1 Ax &4, 21 in Table 1I)
((p.p)(p.p))—>(q->q) , ote.
will imoly any theorgm of CCl , bnt no conjunctions having juct an odd number of
occurrences of » given virirble will iroly any theorem. Sinmilar remrrks psrtcin to



to the doudle p's in CCl Axiom 7 (#22 in Table 1I). It is hafd to hov the

concept of connexive iiplicotion - thot logic: 11y true conditionals have

antecedents which are cimpatible with the contradictories of their consequents j=

can justifty tuese distinctions between odd and oven nombers of verinble

occurrences. In the Wodal versions of CCl, the modal correlntes of these
invlonsibilitiea (cf, 25,36,37,38 in Table Il,which represent the Axioms of (cacepd Ax s ) oy
CCln vhich differ from those of PAlm) seem Just as nnlikely:

35. Bo(p.p) (Axion 1, CClm)
36, —&p.p)>(a>q) (Axion 2, CClm)
37.  (p.p)>0(p.p) (Axion 9, CClm)

38,  (p.~op)=((qVq)=p) (Axiom 10, CClm)

Tho only one of these four that is included in the modal systems of Lewis is
the second, 736, and this only becaase it is & paradox of strict irlication,
The other three are not derivsble in any of the five Lewis systems, and in any
case rre intoitively anconvincing., The veculiarities of a tyve of conjunction
wilch ylelds differont irplicrtions for odd-numbered conjunctive iterntions of
a varicble than for even-nu. bered ones stend oot 4in all four of these; each fails
if an even-nunbered conjunctive iter:tion {or alternation) is revlrced by rn
odd-nanbered one. These seme pesculiarlities are reflected in the difficalty of
finding a consistent Interpretsotion for the conjunction motrix axiomatized in
CC1, PAl ate.

Anong the interosting $frmal resnlts in i:cCpll's system is that fact that
not only can we define connexive inmpliention in terms of negrtion, conjunction
and a modnl operztor (possibility or necessbty), but we can define the modal
operctors (either p0s8ibility or necoessity) in terms of this primitives of CC1,
i,8., negrtion, conjunction snd the conditionel. Thas we counld have, in CC1,
the dofinitions:

Qp =df ((p-»p)-»p) QOp #df = ((spy=p)pap)
Since iicCz1l proved thet »ll tratolozies sre theorems in hisbsystem, and the
netrices for these defined terms are identicnl with thoge already referred to
(the ‘ronp II Lewis matrices), it follows thrt the nine axioms of CClm can
also be used for CCl vith the conditional vrimitive insterd of the nodal overator.
Thus CCl and CClm are exactly equivelent systenms., Sinece CCl was proved Port-comolete,
CClm con be pro ﬁd Postecomplate also. Since CCl is functionrlly inconplete, CClm
is functionally/comvlete also.
In spite of the instructive and interesting formal properties revealed in

CCl and PAl, in =y opinion, the foregoing analysis shows rether conclusively the
inadequacy as a formalization of a viable logic, of both nmy system PAL and
iieCrll's CC1, Aduitting these inadequacies dofRot, of course, entail rejection
of the non-clnssical theoriems. There are other systems which contrin these -
theorems and leck the objectionalbe fentures just disenssed. Although not fully
satisfactory systems, PAl and CCl are, I believe, helnful first offorts tovards
the construction of n satisfactory non~classical logie.
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" TABLE IT - THE INTERRELATIONSHIPS OF AXTOMS Iy S1,52,S $5,PA1,PAlm, CC1,CClm,PM{Roaser

S1 S2 S3 Si S5 PAl PAlm CCl CClm PM

Classical Theorems
l. p-p + + + + + ¥7 Ax 1 %23 %2 +
2. (p-q)~>(q.p) Ax 1Ax 1 Ax 1 Ax 1 Ax 1 #20 =) %27 #) +
3. {(q.p)>p AX 2AX 2 AX 2 AX2AX2 - = = = 4
he (q.p)=p + + + +* * + Ax 2 + %83 «+
5. {(p.q)op + + + + + Ax 8 %73 %92 %8 Ax 2
6. p-(p.p) AX 3AX3AX3AX I Ax 3 - - - - 4
7. p=(p.p) + + + + 4+ AX9AX3AX10Ax 3 Ax1
8. (plq.r))—>(q.(p.r)) Ax b Ax h Ax h Ax b Ax i, Ax L Ax L Ax S Ax Ly +
9. ({p»>q).(g=>r))~> (p>r)) AX 5AX SAX SAX S AX S + %66 + #66 +
10. {(p»q)>((g>r)>(p>r))) - =+ o+ & w43 wh) Ax 1 el o+
11. ({g=r)> ((p>q)=(p->r))) - = + + + Ax1#31 =2 #31 +
12. ((r.p).=(q.r))->(p.~q) +  +  + 4+ + + AXS + AX S5 +
13. (p>q)> (=~(q.r)> ~(r.p)) + o+ o+ o+ o+ ¥ #67 w9 #67 Ax 3
1. (p-2q)>» ({r.p)-=(q.r}) = + 4+ + 4+ Ax2#%#3 + #3 9+
15. (p—=>=(q.r))={(q.p)~ -r) + 4+ + o+  + AX 359 + %59 «
16. ((p.q)sr)- ((p.-r)> -q) + 0+ o+ 4+ o+ o+ ¥160 + 4
17. {(p—=-q)- (q-»-p) + + + + + Ax 5 #35 #40 #35 +
18. --p->p + + + + + Ax 6 %7 #6l %7 +
19. (1’:->q)->(p: q) +  + 4+ o+ o+ AxTHl %89 #73 «+
20. {(p+p)=>q)=q) - +  + o+ o+ - - Ax 289 +
21. (q.q)=(p-p) + o+ o+ o+ o+ e o AX L 96 o+
22. (p.p)- ((p>p)-(p.p)) = = = = = - - Ax6#112 +
23. p->((p.p).p) + + + & 4+ « a AXTAxS8 +
215" g(p-p-q).q)-; -p + + + + + + #L Ax 8 %6 +
e (pe=(p.=q))=q + + + + + + #6565 Ax 9 #65 +
26. ((-pV((p=p)=p) )V({(pp)V(p+p))ap) “« = = - e < - AT +

Non-Clasiical Theorems
27. (p—=q)}> ~{p==q Ax 10Ax 8 %102 +
28. (p->p)-»-(p-=p) + %2  Ax 12#108
29. '(P""P) - - - - -  #77 + + +
Modal Theorems -
30. =¢p>-p Ax 6 Ax 6 Ax 6 Ax 6 AX 6 Ax 6 Ax 6
31. ¢(p.q)=>o¢p AX 7T + + + v -
32. (p-q)s(=q- -op) AX7?T + o+ Ax 7 Ax 7
33. ¢4p~ 9P
3h. $p>0dp
35. 0¢(p.p)
36. =--¢(q.q)->(p>p)
37. (p-p)=0i(p.p)
38. (p.-ap)=>({(q¥q)- p)

1.

[
B

t 1 <+ 1 3 212
EEE& vy
O N

t ¢+ 1 3 2

Notes: '

'+1 msans that the theorem to the -1a¥f is derivable in the systew.indigated abeve it.

'-! means that the theorem to the .1ef$ is provably not derivable in this systenm.

s1,s2,83, Sk, S5, are based on the formulations in Feys,R, Modal Logics,1965, except
that 'p-»¢p' and '(p-»q)-» (Op>g)' are replaced by the axiome ®=op-»-p' and
'(p>q)-> (-0q->-¢p)' in Lewis and Langford, 1932, ph93: — -

PAl, refers to the system of Angell, JS1, Sept 1962. '

CC1l refers to the system of connexive implication in McCall, JSL, Sept 1966.

PAlm and CClm are the modal versions of PAl and CCl.

'#n' gives the number of the theorem in the system indicated at the top of the column.
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* PAlp(Modal) b

Al. p-p
A2. (q.p)op
A3. p>{p.p) CcCl Ax 10; PAl Ax. 9
Al. (p (q. r))-?(q (p.r)) CCl Ax. 53 PAL Ax. L
A5. ((r.p).-(q.r))>(p.7q)
A6¢ op'*-
A7. (p—»q)-yl-Oq—a-ép)
A8. —vq)—-»-(p-r -q) PAl- Ax. 10
. [A6 - 13? (p—=q)- -(p.=q) PAl Ax. 7
A8 = 2] (p-»p)->-(p->-p) CCl Ax. 12
. [A7 = (A5 - 3] (p=q)> ((r.p)=>(q.r)) [PA1 ax. 2]
{3 =(A1-L4] (p.q)>(q.p) [Lewis S3, Ax 1)
. [A7 = (4 -5] -%(q. p)-*-ﬁp q)
. [Dky, 5= 6] (-q->p)>Ep=>q) :
. [6= (A1 - 7) --p-p [Pal Ax. 6]
[3=(7 -8] (q.--p)>(p.q) . (Also in S3, 1932, but shown
. [A7 = (8 - 9) (p-)q)-? {~q =>-p) derivable by McKinsey, 1935)
. {9 = (H-10] -(q.p)=>-(p.q) CCl Ax. 9

. [D4, 5=(A1 - 11] -¢(-p.p)

. [AT = (8 - 12)] <étp.p)> -¢(p---p)

.[12= (11 ~-13)] p->--p

e[ 3=(kh - lh)] ( ( r) (p.r))>({r.p).~(q.r))

. [A7 = (4 - 15)]) -¥(r.p).-fa.r))~> ~0¢{q.r).(p.r))

. {9 = (15 - 16)] -=¥-(q.r).(p.r))= --¢(r.p).~(q.r))

« {3 =(16-17)] ((p»q).--¥-(q.r).(p. r)))->(--¢((r p).-{(q. r)) (IHQ))
. %A?* (17~ 13)]  -¥--0((r.p).~(q.7)).(p>q))> -¢((p~q).--¢ffg.r).(p.r)

= (3 -19)] -¢(--¢({r.p).-(q.r)).(p>q))

. (18 = (19 - 20)] -o((p=>q).--¢(-(q.r).(p.r)))
. [5=(20 « 21)] =¥(--¢(-(q.r).(p.r)).(p>q))
. [9 = (5 - 22)] '--o(q-p)-> ~=2(p.q))
R e L
. - - (== o) ~R{r.--

. [9 = (a7 - 26)] -(-9q->-°p)-> -(p~q)

. [3=(26 - 27)] (r.-(-¢q->-¢p))->(-(p=q).r)

. [AT7 =(27 -28)] - (-(p—-q).¥)» -«r.-(-0g-> -¢p))

. (D, 5 = (25 - 29)] -&(-((p.r)-=>{q.r)}.(p=q))

. [28 = (29 -30)] -¢((p->q).-(-0{q.r)> -¢(p.r))

. DL, 30 = 31] (paq)ﬂ(q-)r)-’(p-br)) CC! Ax. 1
. {31 =(13 - 32)] (--p=>q)~> ? '

. 3L = 6-(32-33))]) (-q--p) = p-)q)

(pr >(q.r))

« [31 = (7 - 34)] ( p=>q)>(--p—>q)

. {31 = (3!:,-(33 '35))] (p-a-q)-*(q-* -p) PAl1 Ax. 5
. £31 = 36] )i: ((-p»-r)->(-q>-r))

. [31 = (9- (36-3?)) (p>q)- ((-p>-r)>(-g+))

. [31 = (9-38)] ((-po-r)-lq->r))->((rsp)>{-g»r))

. [31 = (37-(38-39))] (p=>q)=({r->p)>(=q-=-r))

(3= (9-(39~h0))] (p>q)=(~{-q>-r)> -(r>p))

. [9+ (33 - 41)] -(roq)»-(-g>-r)

. [31= (11 <42)] (-(q»-r)> ~(r-p))>{-(r>q)> ~-(r>p))

. [31 =~ (L2-(40-L3))] (p-q)+ (-{r=q)> -(r->p)) _
. (31 = (U1-(33-4h))] (p-q)-=>({r=p)-(r->q)) PALAx.1



70.

[hh = (u=b5)] ((r.p)=>(q.r})>({r.p)->(r.q.))

« [l = (L5=-(3-L6))] (p-?q)—a((r-p)-?'(r»q)
« [31 = (4=47)) ((r.p)—(r.q))—=((p.r)—>{r.q))
. [31 = (L6-{L7-L8))] (p-’q)-ﬂ ((p r)-v (r.g))

56 = (7 -L9)] ((

-==r)->({q.

e (15-01-50) ?(3 Jopatt el
- [31 = (So-(ay -

({(q.p).~-r!¥(q.(r.p))
= (4=52)] (q.(r.p)»(q.(p.r})

. ;31 = (52 -@A4#-53))] (q.(r.p))~(p.{q.r))
. [31 = (51-(53-58)] ((q p).--r)3(p.{q.r))
. [Lh = (13 - 55)] S g

- [31= (54-(55=56)) q.p).~=r)=>(p.~-(q.r))
. [A7 = (56 -57)] (pa-(q r}))= {{(q.p)>-¥)

o [hh = (7 -58)] (p-r- =+ {p=q)

. {31 = (57-(58-59))1 (p—h(q -r)) = ((q.p)=r)
. [31 = (4 -60)] ((q.p)~r)={(p.q)=r)

. {31 = (59-(60-61))] (p-=-(q.-r))=({p.q)> r)
. [llh= (a6 62)] (p==o(q.-r))+(p=-(g.-r))

. [31 » (62-(61-63))] (p- (Q* r))- ((p-q)~T)
. [63 = (35 - 614)] ((p-r-q 3 =-p

. [59 = (A1 -65)] (p (p.-a))->q

. [63 = (31 -66)] -=q). (q-ar))%(ra-%r)

. [hly = (8~(aAS - 67))?

- [9 = (67 «08)] (p>q)>(-{q.r)> ~{r.p))
. [46 = (68-69)] (p>q)> (~(q.r)> ~(r.p))

) )=>(p.--(q.r))

( (q r)e==(r.p})-=(p.~q)

131 = (53(L-70))} (p.(3.r})=*((p.q}.r)

71. [25 = {4'=T71)] ({p.qj.-p}-X(q.p)--P)

72.

13.

[ 9= (72-72)] ~((q.p).=p)=»((p.q).-p)
{72 = (a2 ~ 73)] -((p.q).-p)

CCl ax. 3

PAl Ax. 3

Importation
CCl Ax. 8
CCl Ax. 9
83 Ax. 5

Rosser PM Ax. 3

Rosser PM Ax. 2



CClm (Modal)#

Al. no{p.p)

A2. -=¢{p. p)¥(q->q)

A3. ps(p.p

Ak. (p-(q.r))> (q.(P.r))
A5. ({r.p).=(q.r})>(p.-q)
Ab. ~p>-p

A7. (p->q)> (~0q->=-¢p)
A8. p->((p.p).p)

A9. (p.p)->N(p.p)

A10. (p~Bp)> (qvq)-»p)

The theorems of PAlm, and their justifications, may be kept provided we replace
theorems 1 and 2 by

1 [A6 = (A1 -~ 1)] --0(q.q)
2 (a2 = (1 - 2)] (p»>p),

changing 'Al to '2' in the proofs ef theormms lj, 7, and 11, and replacing
theorem 73 in PAlm by what was 2 in PAlm, i.e.,

73 {46 = 73] (p>q)>-(p.~q) PAl Axiom 7

The proof of theorem 2 in PAlm does not hold, so far, in CClm since '(p=>Q)s>-(p>-q)°'
must be derived from CC.m Axiom 12, (p->p)» -(p»-p) which iz derivable in proofs

in CClm then may proceed as follows, establishing PAlm's Axiom 2, '(q.p)> p!,

in theorem 83.

T {uh = (L6 - (33-74))] (p=>q)->((r.-q)- (rsp))
75 [31 = (74 - (9 - 75))] (p—a?)a((r-‘? q)-a(r:p))

76 3=t 76 ) —(prp—i ‘Corvedion: 76A.[35°= (46> 764)] G 9)>--2@qs)
77 0 { e 76 L31 = (76A%A42-36)3G9) (bp)
78 [61 = (77 - 78)] ((q. q) -p)> 77031 (76~ (73 -77)] (5.4} = (p-p)

79 [25 = (4 - 79)] ((r.p).-(q. r))-a((p r).-(q.r))

80 [31 = (A5 - (79 -80))] ((p.r).-(q.r))=>(psr)

81 [9 = (80 -81)] (paq)e((p r)> (q.r))

82 [ 81= (A3 - 82)] (q.p)> ((q.q).p)

83 [75= (78 -(82-83))] (q.p)>p PAlm Axiom 2,53 Axiom 2
8l [72 = (83-84)] (p.q)>p Rosser, PM Axiom 2
85 [51 = (10 -85)] (q.~(p. q))—>~p)

86 [A7 = (85 - 80)] Op->(q-»(p.q))

87 [31 = (A6 - (7 =87))] DOp->p

88 [31 = (A7 - (33 - 88))] (p-q)»(mP->049)

89 [31 = (13 - (A2 - 89)] <&(q.q)>{p=>p)

90 [88 = (89 -90)] ¢ (q.q)>D{p>p

91 {90 = (ALl - 913] a{p-rp)

92 [86 = (91 -92)] q-»((p—»p).q)

93 [6 = (92 - 93)] (p-»p)>q)>gq

9k [31= (73-(93 - 94))] (((p.,p).,q>.,q) CCl . Axiom 2
95 [33 = (46 =~ 95))] p->0p
96 [31 = (95‘(81-96))] (q. q)-*(p-ap) CCL  Awiom L

97 [31 = (9-(7 ~ 97))] (-r->(p.q))->((p>4q)>r)

98 [31 = (75 -98)] (g(pbq)-br))-r((pﬁq)-b r)

99 [31 = (86-(97-99))] Np->((p>q)->q))

100 {31 = (99-(98-100))] Np- ((p->q)>q)
# The A2 and A6 may be replaced by A2' Q(p .p)->(q->q), and A6' Op-»p; the form
above is utilized simply to preserve similarities between 53 and PAlm and CClwm.




101
102
103
104
105
106
107
108
109
110
111
n2
13

115
116

117.

18
119
120
121

{100 = (Al - 101)] (Q{(p.p)=>¢{p.p))>¢(p.p)

[31= (A7 ~{33 - 102))}]1 (p->q)->(¢p->{q)

121 = (3 - (102 -107))] (p->p)— ({lp-p)><C(p.p))

[31 = (103 ~-(101-104)}] (p->p)-> (p-p)

131 = (11-(48-19)] (p.q)>(p.-=q)

[102= (105-100)] €(p.q)>¢(p.~-q)

31 = (104-(106 - 207})] (p»>p)>%(p.--p)

{31= (107-(13 - 108))] (p~p)~> ~(p>-p) CCL  Xx. 12

[ 200=109] ﬂ(p~p)+(§(g-p)—>(?-p))—>(p-p))

131 = (A?-(209 - 180}}] (p.p)~>(((p-p)—>(p.p))—> (p.p))

(21 = (3 -11)] (((p.p)=>(p-p))>(p.P))>((p->p)->(p.p))

(31 = (110 -(111 -112)}] (p p)->{(p->p)->(p.p)) CCL Axiom 6
[9 = (100 -113)] -({p->p}—>p)-> -¥p

[48 = (113 - 114)] (-({(p>p)~>p).p)>{p.~-0O0D)

148 =(7 - 115)]  (--p.=((p>p)>p))-s(-((p->p)-p).p)

[31 = {(115-(114 -126))] (--p.-{(p>p)->p))->(p.-t1p)

[31 = (34 - (25 - 117))] (p>q}->((--p.-r}>»(q.-r))

{31 = (117-(9 - 118))] (p->q)» (~(q.-r)-» ~(-~p.-r))

118 = (116 - (a10- 119)) -(--(-=p.=({p=>p)->p)).-({qwg)->p))
{129 = 120) (-pv({p>p)->p))v({qvg)- p)

[120-121)  (-pv((p->p)->p))v{(p->p)v(p->p))->p) CCL: Axiom 11



